
Procedure for writing the contrast of the Main Effects and Interactions 
 
The treatment sum of squares is now to be bifurcated into main effects and interactions. This can 
easily be done through contrast analysis. One has to define the set of contrasts for each of the 
main effects and interactions. Before describing the procedure of defining contrasts for main 
effects and interactions, we give some preliminaries. In general, let there be n-factors, say 
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To illustrate the above consider the case of a 543 ××  factorial experiment. Let the three factors 
be represented by . Then Ω , the set of non-null binary vectors is given by  321 FFF
  . { }111,011,101,110,001,,010,100=Ω
Main effects and the interactions  and  are represented by 
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The  matrices for these three factors are  iP
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The coefficient matrices of the treatment contrasts for the above set of main effects and 
interactions are given by 
 
Factorial  Coefficient 
Effect          Matrix 



541
100

1 : 11PP ⊗⊗=F  

523
010

2 : 1P1P ⊗⊗=F  

343
001

3 : P11P ⊗⊗=F  
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21 : 1PPP ⊗⊗=FF  
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31 : P1PP ⊗⊗=FF  

323
011

32 : PP1P ⊗⊗=FF  

321
111

321 : PPPP ⊗⊗=FFF . 
 
For sum of squares of these contrasts and testing of hypothesis, please see Contrast Analysis. 
Now, the next thing in which experimenter is interested is the factorial effect means. Here the 
factorial effect means include the means for all levels of a single factor averaged over levels of 
all other factor means, means for all level combinations of two factors averaged over levels of all 
other factors and so on. 
The means of all combinations of p (≥1) factors arranged over levels of all other factors can be 
obtained as follows: 
Let represent a treatment combination of a p-factor combination, )( 21 pjjj L 1,...,1,0 −= ii sj . 

The mean corresponding to  p-factor treatment combination is given by 
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can be used as a coefficient matrix of the treatment effects for comparing the effects of 
 and (  treatment combinations. To be clearer, consider the 

example of  factorial experiment with factors as A, B and C. Suppose that one is 
interested in obtaining the means of level combinations of factors A and B averaged over levels 
of factor C.  The 6 factor combinations are 00, 01, 02, 10, 11, 12, 20, 21, 22.  Then the mean for 
(02)th  combination is given by  where 
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Further, if all the level combination of p-factors are appearing same number of times in each of 
the 'b' blocks, say a, then we can obtain the least significant difference for comparing the effect 
of p-factor combinations means averaged over levels of all other factors by  
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