Design Resources Server

Analysis of Data from Designed Experiments

Partially Confounded Factorial Experiment

IASRI
Home

<<Back

                                                               Analysis Using SPSS  

Analysis Using SAS         

To test the equality of treatment combinations and identification of best treatment combination requires analysis to be performed on treatment combinations. Therefore, 27 treatment combinations are recoded as:

 

V

N

P

Treatment (renumbered)

 

V

N

P

Treatment (renumbered)

1

1

1

1

2

2

3

15

1

1

2

2

2

3

1

16

1

1

3

3

2

3

2

17

1

2

1

4

2

3

3

18

1

2

2

5

3

1

1

19

1

2

3

6

3

1

2

20

1

3

1

7

3

1

3

21

1

3

2

8

3

2

1

22

1

3

3

9

3

2

2

23

2

1

1

10

3

2

3

24

2

1

2

11

3

3

1

25

2

1

3

12

3

3

2

26

2

2

1

13

3

3

3

27

2

2

2

14

 

 

 

 

 

 

The analysis of the data is performed using PROC GLM of SAS. The SAS commands are given in the sequel.

 

Data Input:

For performing analysis, input the data in the following format. 

{Here Replication is termed as REP, block as blk, three factors as V, N and P and treatment as TRT. It may, however, be noted that one can retain the same name or can code in any other fashion}.

 

data confound;  /*one can enter any other name for data*/

input rep blk v n p trt  yield;

cards;

1          1          2          1          2          1          0.50

1          1          1          2          2          2          0.97

1          1          2          2          3          3          0.75

1          1          3          1          3          4          1.21

1          1          1          3          3          5          1.23

1          1          3          2          1          6          0.98

1          1          2          3          1          7          1.10

1          1          3          3          2          8          1.00

1          1          1          1          1          9          0.50

1          2          2          1          1          10        0.49

1          2          1          2          1          11        0.97

1          2          2          2          2          12        0.98

1          2          3          1          2          13        0.81

1          2          1          3          2          14        1.13

1          2          3          2          3          15        1.67

1          2          2          3          3          16        1.40

1          2          3          3          1          17        1.00

1          2          1          1          3          18        0.73

1          3          2          1          3          19        0.60

1          3          1          2          3          20        1.10

1          3          2          2          1          21        0.70

1          3          3          1          1          22        0.74

1          3          1          3          1          23        1.08

1          3          3          2          2          24        1.40

1          3          2          3          2          25        1.35

1          3          3          3          3          26        2.00

1          3          1          1          2          27        0.60

2          1          1          1          1          1          0.48

2          1          1          2          3          2          1.25

2          1          2          3          1          3          0.93

2          1          3          3          3          4          2.00

2          1          1          3          2          5          1.35

2          1          3          2          1          6          1.30

2          1          2          1          3          7          0.64

2          1          2          2          2          8          0.85

2          1          3          1          2          9          1.16

2          2          2          1          2          10        0.50

2          2          2          3          3          11        1.45

2          2          1          3          1          12        1.32

2          2          1          1          3          13        0.85

2          2          2          2          1          14        0.70

2          2          3          2          3          15        1.92

2          2          3          3          2          16        2.00

2          2          3          1          1          17        1.07

2          2          1          2          2          18        1.00

2          3          1          2          1          19        0.87

2          3          1          1          2          20        0.65

2          3          3          1          3          21        1.30

2          3          1          3          3          22        1.55

2          3          2          1          1          23        0.45

2          3          3          2          2          24        1.85

2          3          3          3          1          25        2.00

2          3          2          2          3          26        1.25

2          3          2          3          2          27        1.40

;

 

/*If one is interested in answering first two questions, then there is no need of recoding the treatment combinations and adding the variable TRT in input.

 

For testing significance of main effects and interaction effects and performing pairwise comparison of single factor level means and means of 2- factors and 3-factors, use the following steps: */

 

proc glm;

class rep  blk v n p;

model yield =rep blk(rep) v n p v*n v*p n*p v*n*p;

means v n p v*n v*p n*p v*n*p/lsd;

lsmeans v n p v*n v*p n*p v*n*p/pdiff;

run;

 

/*Here, the main effects are not confounded, therefore, LSD for means of single factor level comparisons has been obtained. In the absence of knowledge of confounded or unconfounded factorial effects, one may directly perform pair wise effect comparisons using LSMEANS statement alongwith pdiff option.

  

LSD option under means statement gives LSD value only for comparing single factor level means and not for the means of the level combination of 2 or 3 factors. For performing such comparisons LSMEANS statement with PDIFF option may be used.

One may use a host of multiple comparison procedures under the options in MEANS statement viz.  Least Significant Difference (LSD), Duncan’s New multiple - range test ( DUNCAN ), Waller - Duncan (WALLER) test, Tukey’s Honest Significant Difference (TUKEY).  The LSD, DUNCAN and TUKEY options takes level of significance ALPHA = 5% unless ALPHA = options is specified.  Only ALPHA = 1%, 5% and 10% are allowed with the Duncan ’s test.  95% Confidence intervals about means can be obtained using CLM option under MEANS statement 

 

For testing the significance of treatment combination, identification of best treatment combination and for contrast analysis one may use the following: */

 

 

proc glm;

class rep blk trt;

model yield= rep blk(rep) trt;

lsmeans trt/pdiff;

run;  

 

Data File

Result File

<<Back

  Analysis Using SAS                                                  Analysis Using SPSS                               

 

  

 

Home Descriptive Statistics  Tests of Significance Correlation and Regression Completely Randomised Design  RCB Design  

Incomplete Block Design  Resolvable Block Design  Augmented Design  Latin Square Design Factorial RCB Design  

Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design   Strip Plot Design 

Response Surface Design Cross Over Design  Analysis of Covariance Diagnostics and Remedial Measures 

Principal Component Analysis Cluster Analysis Groups of Experiments  Non-Linear Models  

Contact Us 

 

 

Copyright        Disclaimer        How to Quote this page        Report Error        Comments/suggestions 

Descriptive Statistics
Tests of Significance
Correlation and Regression
Completely Randomised Design
RCB Design
Incomplete Block Design
Resolvable Block Design
Augmented Design
Latin Square Design
Factorial RCB Design
Partially Confounded Design
Factorial Experiment with Extra Treatments
Split Plot Design
Strip Plot Design
Response Surface Design
Cross Over Design
Analysis of Covariance
Diagnostics and Remedial Measures
Principal Component Analysis
Cluster Analysis
Groups of Experiments
Non-Linear Models
Contact Us
Other Designed Experiments
    
(Under Development)

For exposure on SAS, SPSS, 

MINITAB, SYSTAT and  

MS-EXCEL for analysis of 

data from designed experiments:

 

Please see Module I of Electronic Book II: Advances in Data Analytical Techniques

available at Design Resource Server        (www.iasri.res.in/design)