Design Resources Server

Analysis of Data from Designed Experiments

Correlation and Regression

IASRI
Home

Example: The following data was collected through a pilot sample survey on Hybrid Jowar crop on yield and biometrical characters. The biometrical characters were average Plant Population (PP), average Plant Height (PH), average Number of Green Leaves (NGL) and Yield (kg/plot).

                                       

S.No.

PP

PH

NGL

Yield

 

S.No.

PP

PH

NGL

Yield

1

142.00

0.525

8.2

2.470

24

55.55

0.265

5.0

0.430

2

143.00

0.640

9.5

4.760

25

88.44

0.980

5.0

4.080

3

107.00

0.660

9.3

3.310

26

99.55

0.645

9.6

2.830

4

78.00

0.660

7.5

1.970

27

63.99

0.635

5.6

2.570

5

100.00

0.460

5.9

1.340

28

101.77

0.290

8.2

7.420

6

86.50

0.345

6.4

1.140

29

138.66

0.720

9.9

2.620

7

103.50

0.860

6.4

1.500

30

90.22

0.630

8.4

2.000

8

155.99

0.330

7.5

2.030

31

76.92

1.250

7.3

1.990

9

80.88

0.285

8.4

2.540

32

126.22

0.580

6.9

1.360

10

109.77

0.590

10.6

4.900

33

80.36

0.605

6.8

0.680

11

61.77

0.265

8.3

2.910

34

150.23

1.190

8.8

5.360

12

79.11

0.660

11.6

2.760

35

56.50

0.355

9.7

2.120

13

155.99

0.420

8.1

0.590

36

136.00

0.590

10.2

4.160

14

61.81

0.340

9.4

0.840

37

144.50

0.610

9.8

3.120

15

74.50

0.630

8.4

3.870

38

157.33

0.605

8.8

2.070

16

97.00

0.705

7.2

4.470

39

91.99

0.380

7.7

1.170

17

93.14

0.680

6.4

3.310

40

121.50

0.550

7.7

3.620

18

37.43

0.665

8.4

1.570

41

64.50

0.320

5.7

0.670

19

36.44

0.275

7.4

0.530

42

116.00

0.455

6.8

3.050

20

51.00

0.280

7.4

1.150

43

77.50

0.720

11.8

1.700

21

104.00

0.280

9.8

1.080

44

70.43

0.625

10.0

1.550

22

49.00

0.490

4.8

1.830

45

133.77

0.535

9.3

3.280

23

54.66

0.385

5.5

0.760

46

89.99

0.490

9.8

2.690

   MS-EXCEL DATA FILE

1.      Obtain correlation coefficient between each pair of the variables PP, PH, NGL and yield.

2.      Obtain partial correlation between NGL and yield after removing the linear effect of PP and PH.

3.      Give a scatter plot of the variable PP.

4.      Fit a multiple linear regression equation by taking yield as dependent variable and biometrical characters as explanatory variables. Print the matrices used in the regression computations.

5.      Test the significance of the regression coefficients and also equality of regression coefficients of (a) PP and PH (b) PH and NGL

6.      Obtain the predicted values corresponding to each observation in the data set.

7.      Check for the linear relationship among the biometrical characters, i.e., multi-colinearity in the data.

8.      Fit the multiple linear regression model without intercept.

 

 

 

  Analysis Using SAS                                                         Analysis Using SPSS                                   

 

 

 

         

 

Home Descriptive Statistics  Tests of Significance Correlation and Regression Completely Randomised Design  RCB Design  

Incomplete Block Design  Resolvable Block Design  Augmented Design  Latin Square Design Factorial RCB Design  

Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design Strip Plot Design 

Response Surface Design Cross Over Design  Analysis of Covariance Diagnostics and Remedial Measures 

Principal Component Analysis Cluster Analysis Groups of Experiments  Non-Linear Models  

Contact Us  

 

 

 

Copyright        Disclaimer        How to Quote this page        Report Error        Comments/suggestions 

Descriptive Statistics
Tests of Significance
Correlation and Regression
Completely Randomised Design
RCB Design
Incomplete Block Design
Resolvable Block Design
Augmented Design
Latin Square Design
Factorial RCB Design
Partially Confounded Design
Factorial Experiment with Extra Treatments
Split Plot Design
Strip Plot Design
Response Surface Design
Cross Over Design
Analysis of Covariance
Diagnostics and Remedial Measures
Principal Component Analysis
Cluster Analysis
Groups of Experiments
Non-Linear Models
Contact Us
Other Designed Experiments
    
(Under Development)

For exposure on SAS, SPSS, 
MINITAB, SYSTAT and
 
MS-EXCEL for analysis of data from designed experiments:

 Please see Module I of Electronic Book II: Advances in Data Analytical Techniques

available at Design Resources Server (www.iasri.res.in/design)