Design Resources Server |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
IASRI | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Home |
Analysis Using SAS Analysis Using SPSS To test the significance of treatment combinations, identification of best treatment combination, to compare treatment combinations with and without farmyard manure(FYM) and also to compare the treatments with and without phosphorus solublizing bacteria (PSB), the analysis has to be performed on treatment combinations.Therefore the three factor treatment combinations are recoded as:
Main Procedure is: Start →All Programs → SPSS for Windows → SPSS 15.0/ SPSS13.0/ SPSS10.0 (based on the version available on your machine) → Enter data in Data Editor → Analyze → GLM → Univariate → yield → [puts yield under Dependent list: ] → REP → [puts REP under Fixed Factor(s): ] FYM → [put FYM under Fixed Factor(s):] P → [puts P under Fixed Factor(s):] PSB → [puts PSB under Fixed Factor(s):] Continue → Model... [Opens Model dialogue box] → Custom → Build Term(s) → Main effects → [puts FYM, P and PSB under Model:] → Interaction → [puts FYM*P FYM*PSB P*PSB and FYM*P*PSB under Model:] → Run All. For performing analysis, input the data in the following format. {Here the Replication is termed as REP, three factors as FYM, P and PSB and treatment as TRT. It may, however, be noted that one can retain the same name or can code in any other fashion}. Note:
If one is interested in answering first two questions, then
there is no need of recoding the treatment combinations and
adding the variable TRT in the variable. Following
are the brief description of the steps along with screen
shots. ·
Open Data editor: Start → All
Programs → SPSS for Windows → SPSS
15.0/ SPSS13.0/ SPSS10.0
· Enter data in SPSS Data Editor. There are two views in SPSS Data Editor. In variable view, one can define the name of variables and variable type string or numeric and data view gives the spreadsheet in which data pertaining to variables may be entered in respective columns. In the present case, we enter data in numeric format.
·
Once the data entry is complete, Choose
Analyze from the Menu Bar. Now select Analyze
→ General linear Model → Univariate.
·
This selection displays the following screen.
·
Select yield and send
it to the Dependent Variable box; REP, FYM, P and PSB may be
selected for Fixed Factor(s) box. After doing these the
dialog box looks like this
· For the Interactions select Model in the Univariate dialog box i.e. → Model... [Opens Model dialogue box] → Interaction→ FYM → P → [puts FYM*P under Model:].Similarly FYM*PSB, P*PSB and FYM*P*PSB can also be put under model. This selection displays the following screen.
·
Click Continue to return to the
Univariate dialog box. ·
Alternatively, all possible pair wise
treatment comparisons can be performed using the Button Options
on the dialogue box. A click on Button Options, gives
the option for estimated marginal means and display means
for. From the left hand box, take the effect treatment in
the Display means for. Then check the box Compare main
effects and then there are 3 options for confidence interval
adjustment viz. LSD(none), Bonferrnoni and Sidak. Any one of
these 3 options can be selected. Default option is LSD(None). A screen shot for these options is
·Click Continue
to return to the Univariate dialog box.
This, however, gives comparisons of single factor level means and
provides only the means for 2 factor level combinations and
3-factor level combinations. For 2-factor and 3-factor level
combinations pairwise comparisons or post hoc comparisons
cannot be performed using SPSS.
For testing the significance of treatment combination, identification of best treatment combination and for contrast analysis use the following steps: ·
Choose Analyze from the Menu Bar. Now select Analyze
→ General linear Model → Univariate.
·
Click Continue to return to the
Univariate dialog box
·
For all possible pair wise treatment
comparisons use the Button Options on the dialogue
box. A click on Button Options, gives the option for
estimated marginal means and display means for. From the
left hand box, take the effect treatment in the Display
means for. Then check the box Compare main effects and
then there are 3 options for confidence interval
adjustment viz. LSD(none), Bonferrnoni and Sidak. Any one of
these 3 options can be selected. Default option is LSD(None). · A screen shot for these options is
· Click Paste in the Univariate Dialogue Box to get the commands in the syntax editor. Hear define the contrast as UNIANOVA
Yield BY
REP TRT
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/EMMEANS = TABLES(TRT) COMPARE ADJ(LSD)
/PRINT = DESCRIPTIVE
/CRITERIA = ALPHA(.05) /LMATRIX
'1 2 3 4 5 6 vs 7 8 9 10 11 12' TRT 1 1 1 1 1 1 -1 -1 -1 -1
-1 -1; /LMATRIX'1
3 5 7 9 11 vs 2 4 6 8 10 12' TRT 1 -1 1 -1 1 -1 1 -1 1 -1 1
-1;
/DESIGN = REP TRT .
· Click RUN → ALL To
answer all the questions 1 to 5, the following syntax may be
used after creating the data file. UNIANOVA
Yield BY
REP FYM P PSB
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/EMMEANS = TABLES(FYM) COMPARE ADJ(LSD)
/EMMEANS = TABLES(P) COMPARE ADJ(LSD)
/EMMEANS = TABLES(FYM*P)
/EMMEANS = TABLES(PSB) COMPARE ADJ(LSD)
/EMMEANS = TABLES(FYM*PSB)
/EMMEANS = TABLES(P*PSB)
/EMMEANS = TABLES(FYM*P*PSB)
/CRITERIA = ALPHA(.05)
/DESIGN = REP FYM P FYM*P PSB FYM*PSB P*PSB FYM*P*PSB
. UNIANOVA
Yield BY
REP TRT
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/EMMEANS = TABLES(TRT) COMPARE ADJ(LSD)
/PRINT = DESCRIPTIVE
/CRITERIA = ALPHA(.05) /LMATRIX
'1 2 3 4 5 6 vs 7 8 9 10 11 12' TRT 1 1 1 1 1 1 -1 -1 -1 -1
-1 -1; /LMATRIX'1
3 5 7 9 11 vs 2 4 6 8 10 12' TRT 1 -1 1 -1 1 -1 1 -1 1 -1 1
-1;
/DESIGN = REP TRT . Analysis Using SAS Analysis Using SPSS
Home Descriptive Statistics Tests of Significance Correlation and Regression Completely Randomised Design RCB Design Incomplete Block Design Resolvable Block Design Augmented Design Latin Square Design Factorial RCB Design Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design Strip Plot Design Response Surface Design Cross Over Design Analysis of Covariance Diagnostics and Remedial Measures Principal Component Analysis Cluster Analysis Groups of Experiments Non-Linear Models
Copyright Disclaimer How to Quote this page Report Error Comments/suggestions |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Descriptive Statistics | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Tests of Significance | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Correlation and Regression | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Completely Randomised Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
RCB Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Incomplete Block Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Resolvable Block Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Augmented Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Latin Square Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Factorial RCB Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Partially Confounded Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Factorial Experiment with Extra Treatments | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Split Plot Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Strip Plot Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Response Surface Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Cross Over Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Analysis of Covariance | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Diagnostics and Remedial Measures | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Principal Component Analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Cluster Analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Groups of Experiments | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-Linear Models | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Contact Us | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Other
Designed Experiments (Under Development) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
For exposure on SAS, SPSS, MINITAB, SYSTAT and MS-EXCEL for analysis of data from designed experiments:
Please see Module I of Electronic Book II: Advances in Data Analytical Techniques available at Design Resource Server(www.iasri.res.in/design) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||