Design Resources Server

Analysis of Data from Designed Experiments

Strip Plot Design

IASRI
Home

<<Back

Analysis Using SPSS

Analysis Using SAS 

 

The analysis of the data is performed using PROC GLM of SAS. The SAS commands are given in the sequel.

 

Data Input:

For performing analysis, input the data in the following format. {Here one can call the replication as rep, first strip treatments as A and second strip treatments as B. (It may, however, be noted that one can retain the same name or can code in any other fashion).

 

Prepare a SAS data file using

 

data stripplot;

input rep A  B yield;

cards;

1          1          1          103.60

1          1          2          126.25

1          1          3          115.39

1          2          1          103.80

1          2          2          119.32

1          2          3          106.40

1          3          1          138.30

1          3          2          132.81

1          3          3          128.90

2          1          1            91.65

2          1          2          103.30

2          1          3          101.56

2          2          1          116.65

2          2          2          125.40

2          2          3          144.65

2          3          1          106.60

2          3          2          129.35

2          3          3          138.30

3          1          1          126.91

3          1          2          119.90

3          1          3          134.19

3          2          1          131.19

3          2          2          119.73

3          2          3          127.11

3          3          1          125.80

3          3          2          113.80

3          3          3          125.35

4          1          1          129.61

4          1          2          118.39

4          1          3          123.00

4          2          1          120.81

4          2          2          120.26

4          2          3          125.60

4          3          1          104.71

4          3          2          135.60

4          3          3          114.31

5          1          1          128.29

5          1          2          129.40

5          1          3          123.71

5          2          1          131.29

5          2          2          122.85

5          2          3          138.20

5          3          1          123.31

5          3          2          142.71

5          3          3          152.21

6          1          1          121.06

6          1          2          112.95

6          1          3          115.91

6          2          1          119.60

6          2          2          122.45

6          2          3          126.61

6          3          1          126.96

6          3          2          130.94

6          3          3          131.70

;

 

 

To perform the analysis we use the following steps.

 

proc glm;

class rep a b;

model yield=rep a rep*a b rep*b a*b;

test h=a e=rep*a;

means a /lsd e=rep*a;

means b/lsd  e=rep*b;

means b a*b/lsd;

lsmeans a*b/pdiff;

run;

 

 

Note: In the test statement H = numerator for source of variation and

                                          E = denominator source of variation

 

One can use TUKEY or Scheffe in place of lsd for making all possible pairwise comparisons. Statement  means b a*b/lsd; gives only means and standard deviations for level combinations of a and b. For pairwise comparison of level combinations of  a and b, the statement lsmeans a*b/pdiff is used. One may, however, compute only the means from the software and compute the minimum significant differences using the given formulae on the click of mouse.

 

Data File

 

Result File

<<Back

  Analysis Using SAS                                                  Analysis Using SPSS                                                

 

 

Home Descriptive Statistics  Tests of Significance Correlation and Regression Completely Randomised Design  RCB Design  

Incomplete Block Design  Resolvable Block Design  Augmented Design  Latin Square Design Factorial RCB Design  

Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design Strip Plot Design 

Response Surface Design Cross Over Design  Analysis of Covariance Diagnostics and Remedial Measures 

Principal Component Analysis Cluster Analysis Groups of Experiments  Non-Linear Models  

Contact Us  

 

 

 

 

Copyright        Disclaimer        How to Quote this page        Report Error        Comments/suggestions 

Descriptive Statistics
Tests of Significance
Correlation and Regression
Completely Randomised Design
RCB Design
Incomplete Block Design
Resolvable Block Design
Augmented Design
Latin Square Design
Factorial RCB Design
Partially Confounded Design
Factorial Experiment with Extra Treatments
Split Plot Design
Strip Plot Design
Response Surface Design
Cross Over Design
Analysis of Covariance
Diagnostics and Remedial Measures
Principal Component Analysis
Cluster Analysis
Groups of Experiments
Non-Linear Models
Contact Us
Other Designed Experiments
   
(Under Development)

For exposure on SAS, SPSS, 
MINITAB, SYSTAT and
 
MS-EXCEL for analysis of data from designed experiments:

 Please see Module I of Electronic Book II: Advances in Data Analytical Techniques

available at Design Resource Server (www.iasri.res.in/design)