Design Resources Server |
|
||||
IASRI | |||||
Home |
<<Back Analysis Using SAS Data
Input: Prepare a SAS data file using
DATA plantheight; /*one can enter any other name for
Data*/; PROC
ANOVA; /*One can obtain means of trees and all possible pair wise treatment comparisons using least significant differences and Duncan’s New Multiple range tests by using of the following statements:*/ PROC
ANOVA; /*One may use a host of multiple comparison procedures under the options in MEANS statement viz. Least Significant Difference (LSD), Duncan’s New multiple - range test (DUNCAN), Waller - Duncan (WALLER) test, Tukey’s Honest Significant Difference (TUKEY). The LSD, DUNCAN and TUKEY options takes level of significance ALPHA = 5% unless ALPHA = options is specified. Only ALPHA = 1%, 5% and 10% are allowed with the Duncan’s test. 95% Confidence intervals about means can be obtained using CLM option under MEANS statement One
can not perform Contrast analysis by using PROC ANOVA, therefore,
one has to use PROC GLM. This can be done using the
following steps.
i. The
interest of the experimenter is to test a null hypothesis
that the average effect of Tree The following SAS statements can be made use of */ Proc
GLM; Analysis Using SAS Analysis Using SPSS Home Descriptive Statistics Tests of Significance Correlation and Regression Completely Randomised Design RCB Design Incomplete Block Design Resolvable Block Design Augmented Design Latin Square Design Factorial RCB Design Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design Strip Plot Design Response Surface Design Cross Over Design Analysis of Covariance Diagnostics and Remedial Measures Principal Component Analysis Cluster Analysis Groups of Experiments Non-Linear Models
Copyright Disclaimer How to Quote this page Report Error Comments/suggestions |
||||
Descriptive Statistics | |||||
Tests of Significance | |||||
Correlation and Regression | |||||
Completely Randomised Design | |||||
RCB Design | |||||
Incomplete Block Design | |||||
Resolvable Block Design | |||||
Augmented Design | |||||
Latin Square Design | |||||
Factorial RCB Design | |||||
Partially Confounded Design | |||||
Factorial Experiment with Extra Treatments | |||||
Split Plot Design | |||||
Strip Plot Design | |||||
Response Surface Design | |||||
Cross Over Design | |||||
Analysis of Covariance | |||||
Diagnostics and Remedial Measures | |||||
Principal Component Analysis | |||||
Cluster Analysis | |||||
Groups of Experiments | |||||
Non-Linear Models | |||||
Contact Us | |||||
Other
Designed Experiments (Under Development) |
|||||
For
exposure on SAS, SPSS, Please see Module I of Electronic Book II: Advances in Data Analytical Techniques available at Design Resource Server (www.iasri.res.in/design) |
|||||