Design Resources Server

Analysis of Data from Designed Experiments

Cross-Over Design

IASRI
Home

<<Back

Analysis Using SPSS

Analysis Using SAS 

To answer the question whether there is any difference between treatment and residual effects. Rearrange the data in the following order: animal numbers as units; periods (code 1 to 3).

 

ANIMAL NUMBERS

UNITS

53

1

54

2

58

3

75

4

81

5

97

6

72

7

79

8

106

9

84

10

89

11

70

12

 

 alphabetical numbers as treatments

 ALPHABETICAL CODE

TREATMENT NUMBER

A

1

B

2

C

3

 

and residual effect as residual (coding could be done as follows: for every first period the number one has assigned (fixed) and for other periods  code 1 to 3 are given according to the treatment received by the unit in the previous period).

 

Note: A carry-over or residual term has the special property as a factor, or class variate, of having no level in the first period because the treatment in the first period is not affected by any residual or carry over effect of any treatment. When we consider the residual or carryover effect in practice the fact that carry-over or residual effects will be adjusted for period effects (by default all effects are adjusted for all others in these analysis). As a consequence, any level can be assigned to the residual variate in the first period, provided the same level is always used. An adjustment for periods then removes this part of the residual term. (For details a reference may made to Jones, B. and Kenward,M.G. 2003. Design and Analysis of Cross Over Trials. Chapman and Hall/CRC. New York . Pp: 212)

 

Data Input:
For performing analysis, input the data in the following format.

{Here we call animal numbers as units, periods as periods, treatment number as treat and residual effect as residual. It may, however, be noted that one can retain the same name or can code in any other fashion}.

Prepare a SAS data file using

 

data cod;

input units periods treat residual yield;

cards;

1          1          1          1          72

1          2          2          1          73

1          3          3          2          77

2          1          2          1          75

2          2          3          2          78

2          3          1          3          70

3          1          3          1          75

3          2          1          3          77

3          3          2          1          73

4          1          1          1          64

4          2          3          1          68

4          3          2          3          71

5          1          2          1          80

5          2          1          2          72

5          3          3          1          80

6          1          3          1          74

6          2          2          3          76

6          3          1          2          70

7          1          1          1          58

7          2          3          1          62

7          3          2          3          67

8          1          2          1          64

8          2          1          2          56

8          3          3          1          60

9          1          3          1          72

9          2          2          3          69

9          3          1          2          66

10        1          2          1          76

10        2          3          2          79

10        3          1          3          65

11        1          1          1          61

11        2          2          1          50

11        3          3          2          60

12        1          3          1          71

12        2          1          3          72

12        3          2          1          75

;

 

*Analysis can be performed by using the following SAS statements;

 

proc glm data=cod;

class units periods treat residual;

model yield = units periods treat residual/ss3;

lsmeans treat/pdiff adjust =tukey;

lsmeans residual/pdiff adjust =tukey;

run

 

/*Note: Type III sum of squares provide adjustment against all the effects appearing in the model. If the user is interested in getting separate ANOVA for the two cases viz. (i) adjusted treatment effects and unadjusted residual effect and (ii) unadjusted treatment effects and adjusted residual effects, then the above code may be written twice with type I sum of squares as respectively:*/

 

proc glm data=cod;

class units periods treat residual;

model yield = units periods residual treat /ss1;

LSmeans treat/pdiff adjust =tukey;

run;

 

proc glm data=cod;

class units periods treat residual;

model yield = units periods treat residual /ss1;

LSmeans residual/pdiff adjust =tukey;

run

 

/*Note: If any one is interested on random effect of units, can use Proc mixed instead of proc glm.*/

 

Data File

Result File

<<Back

 Analysis Using SAS                                                      Analysis Using SPSS                                    

 

  

 

Home Descriptive Statistics  Tests of Significance Correlation and Regression Completely Randomised Design  RCB Design  

Incomplete Block Design  Resolvable Block Design  Augmented Design  Latin Square Design Factorial RCB Design  

Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design Strip Plot Design 

Response Surface Design Cross Over Design  Analysis of Covariance Diagnostics and Remedial Measures 

Principal Component Analysis Cluster Analysis Groups of Experiments  Non-Linear Models  

Contact Us 

 

 

 

 

 

Copyright        Disclaimer        How to Quote this page        Report Error        Comments/suggestions 

Descriptive Statistics
Tests of Significance
Correlation and Regression
Completely Randomised Design
RCB Design
Incomplete Block Design
Resolvable Block Design
Augmented Design
Latin Square Design
Factorial RCB Design
Partially Confounded Design
Factorial Experiment with Extra Treatments
Split Plot Design
Strip Plot Design
Response Surface Design
Cross Over Design
Analysis of Covariance
Diagnostics and Remedial Measures
Principal Component Analysis
Cluster Analysis
Groups of Experiments
Non-Linear Models
Contact Us
Other Designed Experiments
  
(Under Development)

For exposure on SAS, SPSS,
 MINITAB, SYSTAT and
 
MS-EXCEL for analysis of data from designed experiments:

 Please see Module I of Electronic  Book II: Advances in Data Analytical Techniques

available at Design Resource Server (www.iasri.res.in/design)