Design Resources Server

Analysis of Data from Designed Experiments

Descriptive Statistics 

IASRI
Home

<<Back

Analysis Using SPSS 

    Analysis Using SAS      

   

For the analysis of the data SAS commands are given in the sequel.

 

Data Input:

For performing analysis, input the data in the following format. 

{Here Number of fruit (45 days) is termed as fs45, Fruit weight (kg) is termed as fw, Seed yield/plant (g) is termed as syp and Seedling length (cm) is termed as sl. It may, however, be noted that one can retain the same name or can code in any other fashion}.

 

data descriptive_stats;

input group fs45 fw syp sl;

label fs45 = "No. of fruit Set (45days)";

label fw = "Fruit weight (kg)";

label syp = "Seed yield/plant (g)";

label sl = "Seedling length (cm)";

cards;

1       7.0      1.85     147.70    16.86

1       7.0      1.86     136.86    16.77

1       6.0      1.83     149.97    16.35

1       7.0      1.89     172.33    18.26

1       7.0      1.80     144.46    17.90

1       6.0      1.88     138.30    16.95

1       7.0      1.89     150.58    18.15

1       7.0      1.79     140.99    18.86

1       6.0      1.85     140.57    18.39

1       7.0      1.84     138.33    18.58

2       6.3      2.58     224.26    18.18

2       6.7      2.74     197.50    18.07

2       7.3      2.58     230.34    19.07

2       8.0      2.62     217.05    19.00

2       8.0      2.68     233.84    18.00

2       8.0      2.56     216.52    18.49

2       7.7      2.34     211.93    17.45

2       7.7      2.67     210.37    18.97

2       7.0      2.45     199.87    19.31

2       7.3      2.44     214.30    19.36

;

 

 *1. To obtain mean, standard deviation, minimum and maximum values of all the characters.;

proc means data=descriptive_stats;

title 'mean, standard deviation, minimum and maximum values of all characters';

var fs45 fw syp sl;

run;

 

 *2. To obtain mean, standard deviation, minimum and maximum values of all the characters for each group separately.;

proc means data=descriptive_stats;

title 'mean, standard deviation, minimum and maximum values of all characters for each group separately';

var fs45 fw syp sl;

by group;

run;

 

 *3.  To obtain mean, median, coefficient of skewness, coefficient of kurtosis of all the characteres.;

proc summary print mean median std  skewness kurtosis  data=descriptive_stats;

title 'mean, median, coefficient of skewness, coefficient of kurtosis of all the characteres';

var fs45 fw syp sl;

run;

 

 *4. To obtain mean, median, coefficient of skewness, coefficient of kurtosis of all the characters for each of the group separately.;

proc summary print mean median std  skewness kurtosis  data=descriptive_stats;

title 'mean, median, coefficient of skewness, coefficient of kurtosis of all characters for each of the group separately';

class group;

var fs45 fw syp sl;

run;

 

* 5. To test whether the data follows a normal distribution or not for all the characters and for each of the two groups separately.;

proc univariate  normal data=descriptive_stats;

title 'test whether the data follows a normal distribution or not for all the characters and for each of the two groups separately';

class group;

var fs45 fw syp sl;

run;

 

 *6. To prepare a discrete frequency table for all the characters for the above data on group.;

proc freq data=descriptive_stats;

title 'discrete frequency table for all the characters for the above data on group';

by group;

run;

 

* 7. To prepare 2-way frequency table between group and fruit set after 45 days.;

proc freq data=descriptive_stats;

title '2-way frequency table between group and fruit set after 45 days';

table group*fs45;

run;

 

 *8. To create a stem and leaf plot and box plot for all the characters.;

proc univariate data=descriptive_stats plot;

title 'a stem and leaf plot and box plot for all the characters';

var fs45 fw syp sl;

run;

 

 *9.  To create a stem and leaf plot and box plot for all the characters for each group separately.;

proc univariate data=descriptive_stats plot;

title 'a stem and leaf plot and box plot for all the characters for each group separately';

class group;

var fs45 fw syp sl;

run;

 

 

 *10. To make the grouped frequency distribution we use the following statements.;

proc format;

 value myformat

   135-145="135-145"

   145-155="145-155"

   155-165="155-165"

   165-175="165-175"

   175-185="175-185"

   185-195="185-195"

   195-205="195-205"

   205-215="205-215"

   215-225="215-225"

   225-235="225-235";

run;

 

data seedyield;

 input syp;

 format syp myformat.;

 cards;

147.70

136.86

149.97

172.33

144.46

138.30

150.58

140.99

140.57

138.33

224.26

197.50

230.34

217.05

233.84

216.52

211.93

210.37

199.87

214.30

;

 

proc freq data=seedyield;

label syp = "seed yield/plant (g)";

title 'the grouped frequency distribution';

run;

 

 *11. To prepare a histogram for the grouped frequency distribution for seed yield/plant (g) in question number 10.;

 proc univariate data=seedyield noprint;

 label syp = "seed yield/plant (g)";

 histogram syp/ midpoints = 140 to 240 by 10;

 run;

 

Data File

Result File  Histogram

<<Back

 

              Analysis Using SAS                                                     Analysis Using SPSS                                                      

                            

 

 

 

Home Descriptive Statistics  Tests of Significance Correlation and Regression Completely Randomised Design  RCB Design  

Incomplete Block Design  Resolvable Block Design  Augmented Design  Latin Square Design Factorial RCB Design  

Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design Strip Plot Design 

Response Surface Design Cross Over Design  Analysis of Covariance Diagnostics and Remedial Measures 

Principal Component Analysis Cluster Analysis Groups of Experiments  Non-Linear Models  

Contact Us

 

 

   

Copyright        Disclaimer        How to Quote this page        Report Error        Comments/suggestions 

Descriptive Statistics
Tests of Significance
Correlation and Regression
Completely Randomised Design
RCB Design
Incomplete Block Design
Resolvable Block Design
Augmented Design
Latin Square Design
Factorial RCB Design
Partially Confounded Design
Factorial Experiment with Extra Treatments
Split Plot Design
Strip Plot Design
Response Surface Design
Cross Over Design
Analysis of Covariance
Diagnostics and Remedial Measures
Principal Component Analysis
Cluster Analysis
Groups of Experiments
Non-Linear Models
Contact Us
Other Designed Experiments
    
(Under Development)

For exposure on SAS, SPSS, 

MINITAB, SYSTAT and  

MS-EXCEL for analysis of 

data from designed experiments:

 

Please see Module I of Electronic Book II: Advances in Data Analytical Techniques

available at Design Resources Server   (www.iasri.res.in/design)