Design Resources Server

Analysis of Data from Designed Experiments

Balanced Confounded Factorial Experiment with Extra Treatment  

IASRI
Home

 <<Back

                                                               Analysis Using SPSS 

 Analysis Using SAS         

To test the significance of 19 treatment combinations and identify the best treatment combination and to compare all the 18 treatment combinations with the control treatment requires analysis to be performed on treatment combinations. Therefore, 19 treatment combinations are recoded as:

 

N

P

K

Treatment
(Renumbered)

40

0

0

1

40

0

40

2

40

40

0

3

40

40

40

4

40

80

0

5

40

80

40

6

80

0

0

7

80

0

40

8

80

40

0

9

80

40

40

10

80

80

0

11

80

80

40

12

120

0

0

13

120

0

40

14

120

40

0

15

120

40

40

16

120

80

0

17

120

80

40

18

0

0

0

19

 

Using the procedure of block designs with factorial structure, the contrasts for main effects and interactions are:

 

N:

1

1

1

1

1

1

-1

-1

-1

-1

-1

-1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

-2

-2

-2

-2

-2

-2

0

P:

1

1

-1

-1

0

0

1

1

-1

-1

0

0

1

1

-1

-1

0

0

0

1

1

1

1

-2

-2

1

1

1

1

-2

-2

1

1

1

1

-2

-2

0

K:

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

0

NP:

1

1

-1

-1

0

0

-1

-1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

-2

-2

-1

-1

-1

-1

2

2

0

0

0

0

0

0

0

1

1

-1

-1

0

0

1

1

-1

-1

0

0

-2

-2

2

2

0

0

0

1

1

1

1

-2

-2

1

1

1

1

-2

-2

-2

-2

-2

-2

4

4

0

NK:

1

-1

1

-1

1

-1

-1

1

-1

1

-1

1

0

0

0

0

0

0

0

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

-2

2

-2

2

-2

2

0

PK:

1

-1

-1

1

0

0

1

-1

-1

1

0

0

1

-1

-1

1

0

0

0

1

-1

1

-1

-2

2

1

-1

1

-1

-2

2

1

-1

1

-1

-2

2

0

NPK:

1

-1

-1

1

0

0

-1

1

1

-1

0

0

0

0

0

0

0

0

0

1

-1

1

-1

-2

2

-1

1

-1

1

2

-2

0

0

0

0

0

0

0

1

-1

-1

1

0

0

1

-1

-1

1

0

0

-2

2

2

-2

0

0

0

1

-1

1

-1

-2

2

1

-1

1

-1

-2

2

-2

2

-2

2

4

-4

0

Control vs rest

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

-18

 

The analysis of the data is performed using PROC GLM of SAS. The SAS commands are given in the sequel.

 

Data Input:

For performing analysis, input the data in the following format. 

{Here the replication is termed as rep, block as blk treatment as trt and the three factors as N, P and K. It may however, be noted that one can retain the same name or can code in any other fashion}.

 

Prepare a SAS data file using

 

Options linesize=72;

data ludh98k;  /*one can enter any other name for data*/

input rep blk N P K trt yield;   

cards;

1          1          40        0          0          1          7.79

1          1          120      80        0          17        10.30

1          1          40        80        40        6          10.08

1          1          120      40        40        16        11.66

1          1          80        0          40        8          9.13

1          1          80        40        0          9          10.56

1          1          0          0          0          19        4.75

1          2          40        0          40        2          6.12

1          2          120      0          0          13        8.44

1          2          120      80        40        18        11.44

1          2          80        40        40        10        9.13

1          2          80        80        0          11        9.40

1          2          40        40        0          3          6.85

1          2          0          0          0          19        4.22

1          3          80        0          0          7          6.25

1          3          120      0          40        14        7.78

1          3          40        40        40        4          6.66

1          3          80        80        40        12        9.42

1          3          40        80        0          5          6.50

1          3          120      40        0          15        11.82

1          3          0          0          0          19        2.82

2          1          120      0          0          13        7.86

2          1          120      40        40        16        10.15

2          1          40        80        40        6          7.50

2          1          80        0          40        8          7.89

2          1          80        80        0          11        8.00

2          1          40        40        0          3          6.40

2          1          0          0          0          19        4.57

2          2          120      0          40        14        8.50

2          2          80        80        40        12        9.86

2          2          40        40        40        4          7.70

2          2          120      80        0          17        10.79

2          2          80        40        0          9          7.87

2          2          40        0          0          1          6.30

2          2          0          0          0          19        4.22

2          3          80        0          0          7          7.00

2          3          40        80        0          5          8.00

2          3          120      80        40        18        10.90

2          3          40        0          40        2          6.62

2          3          80        40        40        10        9.62

2          3          120      40        0          15        9.50

2          3          0          0          0          19        2.22

3          1          80        80        0          11        10.00

3          1          120      80        40        18        10.86

3          1          40        40        40        4          7.58

3          1          80        0          40        8          6.35

3          1          120      40        0          15        9.40

3          1          40        0          0          1          5.94

3          1          0          0          0          19        3.26

3          2          120      0          40        14        9.00

3          2          40        80        40        6          8.80

3          2          80        40        40        10        9.53

3          2          120      80        0          17        10.56

3          2          40        40        0          3          7.07

3          2          80        0          0          7          6.00

3          2          0          0          0          19        2.64

3          3          80        40        0          9          7.20

3          3          120      0          0          13        8.36

3          3          40        0          40        2          6.05

3          3          80        80        40        12        10.45

3          3          120      40        40        16        10.10

3          3          40        80        0          5          7.50

3          3          0          0          0          19        3.50

4          1          80        80        0          11        7.97

4          1          80        40        40        10        7.18

4          1          40        80        40        6          6.16

4          1          40        0          0          1          4.95

4          1          120      40        0          15        10.12

4          1          120      0          40        14        7.15

4          1          0          0          0          19        1.98

4          2          80        0          0          7          6.65

4          2          40        40        0          3          6.66

4          2          80        80        40        12        7.90

4          2          120      40        40        16        10.10

4          2          40        0          40        2          6.49

4          2          120      80        0          17        10.30

4          2          0          0          0          19        1.76

4          3          80        0          40        8          6.12

4          3          40        40        40        4          5.80

4          3          120      80        40        18        10.06

4          3          120      0          0          13        7.37

4          3          80        40        0          9          7.24

4          3          40        80        0          5          7.70

4          3          0          0          0          19        1.62

;

 

/* Perform the analysis of the main effects and the interactions of the data, test the significance of 19 treatment combinations and identify the best treatment combination and to compare all the 18 treatment combinations with the control treatment using the following statements. */

 

proc glm;

class rep blk trt;

model yield = rep blk(rep) trt;

lsmeans trt/pdiff;

 

contrast 'N’ trt 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 ,

                    trt 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 0 ;                                                     

contrast 'P'  trt 1 1 -1 -1 0 0 1 1 -1 -1 0 0 1 1 -1 -1 0 0 0 ,

                    trt 1 1 1 1 -2 -2 1 1 1 1 -2 -2 1 1 1 1 -2 -2 0;

                                                                                                                                               

Contrast 'K’ trt 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 0;

                                                                                                                                   

Contrast 'NP' trt 1 1 -1 -1 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0 0,

                     trt 1 1 1 1 -2 -2 -1 -1 -1 -1 2 2 0 0 0 0 0 0 0,

                     trt 1 1 -1 -1 0 0 1 1 -1 -1 0 0 -2 -2 2 2 0 0 0,

                     Trt 1 1 1 -2 -2 1 1 1 1 -2 -2 -2 -2 -2 -2 4 4 0;

                                                                                                                                               

Contrast 'NK' trt 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 0 0 0 0 0 0 0,

                      trt 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -2 2 -2 2 -2 2 0;

                                                                                                                                   

Contrast 'PK' trt 1 -1 -1 1 0 0 1 -1 -1 1 0 0 1 -1 -1 1 0 0 0,

                      trt 1 -1 1 -1 -2 2 1 -1 1 -1 -2 2 1 -1 1 -1 -2 2 0;

                                                                                                                                   

Contrast 'NPK' trt 1 -1 -1 1 0 0 -1 1 1 -1 0 0 0 0 0 0 0 0 0,

                        trt 1 -1 1 -1 -2 2 -1 1 -1 1 2 -2 0 0 0 0 0 0 0,

                        trt 1 -1 -1 1 0 0 1 -1 -1 1 0 0 -2 2 2 -2 0 0 0,

                        trt 1 -1 1 -1 -2 2 1 -1 1 -1 -2 2 -2 2 -2 2 4 -4 0;          

Contrast 'Control vs rest' trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -18;

run;  

 

Data File

 

Result File

<<Back

  Analysis Using SAS                                                  Analysis Using SPSS                               


  

 

Home Descriptive Statistics  Tests of Significance Correlation and Regression Completely Randomised Design  RCB Design  

Incomplete Block Design  Resolvable Block Design  Augmented Design  Latin Square Design Factorial RCB Design  

Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design Strip Plot Design 

Response Surface Design Cross Over Design  Analysis of Covariance Diagnostics and Remedial Measures 

Principal Component Analysis Cluster Analysis Groups of Experiments  Non-Linear Models  

Contact Us  

    

 

 

 

Copyright        Disclaimer        How to Quote this page        Report Error        Comments/suggestions 

Descriptive Statistics
Tests of Significance
Correlation and Regression
Completely Randomised Design
RCB Design
Incomplete Block Design
Resolvable Block Design
Augmented Design
Latin Square Design
Factorial RCB Design
Partially Confounded Design
Factorial Experiment with Extra Treatments
Split Plot Design
Strip Plot Design
Response Surface Design
Cross Over Design
Analysis of Covariance
Diagnostics and Remedial Measures
Principal Component Analysis
Cluster Analysis
Groups of Experiments
Non-Linear Models
Contact Us
Other Designed Experiments
    
(Under Development)

For exposure on SAS, SPSS, 

MINITAB, SYSTAT and  

MS-EXCEL for analysis of 

data from designed experiments:

 

Please see Module I of Electronic Book II: Advances in Data Analytical Techniques

available at Design Resource Server  (www.iasri.res.in/design)