Design Resources Server

Analysis of Data from Designed Experiments

Balanced Confounded Factorial Experiment with Extra Treatment 

IASRI
Home

<<Back  

                                                               Analysis Using SAS  

 Analysis Using SPSS  

 

 Main Procedure is:  

 

Start →All Programs → SPSS for Windows → SPSS 15.0/ SPSS13.0/ SPSS10.0 (based on the version available on your machine) → Enter data in Data Editor → Analyze → GLM → Univariate  → yield → [puts yield under Dependent list:] block → [puts block under Fixed Factor(s): ]   trt → [puts trt under Fixed Factor(s):]  rep → [puts rep under Fixed Factor(s):]Continue → Model... [Opens Model dialogue box] Custom → Build Term(s) → Main effects  →   [puts rep, block, trt under Model: ] Paste → It comes in Syntax mode, then define model as rep block(rep) trt Run All.

 

To test the significance of 19 treatment combinations and identify the best treatment combination and to compare all the 18 treatment combinations with the control treatment requires analysis to be performed on treatment combinations. Therefore, 19 treatment combinations are recoded as:

 

N

P

K

Treatment
(Renumbered)

40

0

0

1

40

0

40

2

40

40

0

3

40

40

40

4

40

80

0

5

40

80

40

6

80

0

0

7

80

0

40

8

80

40

0

9

80

40

40

10

80

80

0

11

80

80

40

12

120

0

0

13

120

0

40

14

120

40

0

15

120

40

40

16

120

80

0

17

120

80

40

18

0

0

0

19

 

Using the procedure of block design with factorial structure, the contrasts for main effects and interactions are:

 

N:

1

1

1

1

1

1

-1

-1

-1

-1

-1

-1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

-2

-2

-2

-2

-2

-2

0

P:

1

1

-1

-1

0

0

1

1

-1

-1

0

0

1

1

-1

-1

0

0

0

1

1

1

1

-2

-2

1

1

1

1

-2

-2

1

1

1

1

-2

-2

0

K:

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

0

NP:

1

1

-1

-1

0

0

-1

-1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

-2

-2

-1

-1

-1

-1

2

2

0

0

0

0

0

0

0

1

1

-1

-1

0

0

1

1

-1

-1

0

0

-2

-2

2

2

0

0

0

1

1

1

1

-2

-2

1

1

1

1

-2

-2

-2

-2

-2

-2

4

4

0

NK:

1

-1

1

-1

1

-1

-1

1

-1

1

-1

1

0

0

0

0

0

0

0

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

-2

2

-2

2

-2

2

0

PK:

1

-1

-1

1

0

0

1

-1

-1

1

0

0

1

-1

-1

1

0

0

0

1

-1

1

-1

-2

2

1

-1

1

-1

-2

2

1

-1

1

-1

-2

2

0

NPK:

1

-1

-1

1

0

0

-1

1

1

-1

0

0

0

0

0

0

0

0

0

1

-1

1

-1

-2

2

-1

1

-1

1

2

-2

0

0

0

0

0

0

0

1

-1

-1

1

0

0

1

-1

-1

1

0

0

-2

2

2

-2

0

0

0

1

-1

1

-1

-2

2

1

-1

1

-1

-2

2

-2

2

-2

2

4

-4

0

Control vs rest

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

-18

 

For performing analysis, input the data in the following format. 

{Here the replication is termed as rep, treatment as trt and the three factors as N, P and K. It may however, be noted that one can retain the same name or can code in any other fashion}.

 

 Following are the brief description of the steps along with screen shots.

·         Open Data editor: Start All Programs SPSS for Windows SPSS 15.0/ SPSS13.0/  SPSS10.0

·         Enter data in SPSS Data Editor. There are two views in SPSS Data Editor. In variable view, one can define the name of variables and variable types string or numeric and data view gives the spreadsheet in which data pertaining to variables may be entered in respective columns. In the present case, we enter data in numeric format. 

 

 

·         Once the data entry is complete, Choose Analyze from the Menu Bar. Now select Analyze → General linear Model → Univariate. 

 

·         This selection displays the following screen.

 

 

·         Select yield and send it to the Dependent Variable box; rep, block and trt may be selected for Fixed Factor(s) box. After doing these the dialog box should be like this


·     Select Model in the Univariate dialog box i.e. Model... [Opens Model dialogue box]. Put rep, block and trt under the model for main effects

·         Click Continue to return to the Univariate dialog box.

·          All possible pair wise treatment comparisons can be performed using the Button Options on the dialogue box. A click on Button Options, gives the option for estimated marginal means and display means for. From the left hand box, take the effect treatment in the Display means for. Then check the box Compare main effects and then there are 3 options for confidence interval adjustment viz. LSD(none), Bonferrnoni and Sidak. Any one of these 3 options can be selected. Default option is LSD(None). 

 

       A screen shot for these options is 

·      Click Continue to return to the Univariate dialog box.

Click Paste to get the commands in syntax editor. Now define model as per design adopted to analyze the data. Here it is

/Design = rep block(rep) trt.

 

i) For testing the significance of the main effects and also the interaction effects and

ii) For testing whether the average of all the 18 treatment combinations is significantly different from control treatment

One can use the following statements

 

/Lmatrix 'N' trt 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0;

                   trt 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 0;                                                       

/Lmatrix  'P' trt 1 1 -1 -1 0 0 1 1 -1 -1 0 0 1 1 -1 -1 0 0 0;

                   trt 1 1 1 1 -2 -2 1 1 1 1 -2 -2 1 1 1 1 -2 -2 0;                                           

/Lmatrix 'K' trt 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 0;                          

/Lmatrix ‘NP’ trt 1 1 -1 -1 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0 0;

                       trt 1 1 1 1 -2 -2 -1 -1 -1 -1 2 2 0 0 0 0 0 0 0;

                       trt 1 1 -1 -1 0 0 1 1 -1 -1 0 0 -2 -2 2 2 0 0 0;

                       trt 1 1 1 1 -2 -2 1 1 1 1 -2 -2 -2 -2 -2 -2 4 4 0;                                    

/Lmatrix ‘NK’ trt 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 0 0 0 0 0 0 0;

                       trt 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -2 2 -2 2 -2 2 0;                                   

/Lmatrix 'PK' trt 1 -1 -1 1 0 0 1 -1 -1 1 0 0 1 -1 -1 1 0 0 0;

                          trt 1 -1 1 -1 -2 2 1 -1 1 -1 -2 2 1 -1 1 -1 -2 2 0;                                

/Lmatrix ‘NPK’ trt 1 -1 -1 1 0 0 -1 1 1 -1 0 0 0 0 0 0 0 0 0;

                           trt 1 -1 1 -1 -2 2 -1 1 -1 1 2 -2 0 0 0 0 0 0 0;

                           trt 1 -1 -1 1 0 0 1 -1 -1 1 0 0 -2 2 2 -2 0 0 0;

                           trt 1 -1 1 -1 -2 2 1 -1 1 -1 -2 2 -2 2 -2 2 4 -4 0;                                                       

/Lmatrix ‘Control vs rest' trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -18;

 

·         Click Run → All.

 

 

To answer all the questions 1 to 3, the following syntax may be used after creating the data file.

 

UNIANOVA

  yield  BY rep block trt

  /METHOD = SSTYPE(3)

  /INTERCEPT = INCLUDE

  /EMMEANS = TABLES(trt) COMPARE ADJ(LSD)

  /CRITERIA = ALPHA(.05)

/Lmatrix 'N' trt 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0;

                   trt 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 0;                                                       

/Lmatrix  'P' trt 1 1 -1 -1 0 0 1 1 -1 -1 0 0 1 1 -1 -1 0 0 0;

                   trt 1 1 1 1 -2 -2 1 1 1 1 -2 -2 1 1 1 1 -2 -2 0;                                           

/Lmatrix 'K' trt 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 0;                          

/Lmatrix 'NP' trt 1 1 -1 -1 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0 0;

                       trt 1 1 1 1 -2 -2 -1 -1 -1 -1 2 2 0 0 0 0 0 0 0;

                       trt 1 1 -1 -1 0 0 1 1 -1 -1 0 0 -2 -2 2 2 0 0 0;

                       trt 1 1 1 1 -2 -2 1 1 1 1 -2 -2 -2 -2 -2 -2 4 4 0;                                    

/Lmatrix 'NK' trt 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 0 0 0 0 0 0 0;

                       trt 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -2 2 -2 2 -2 2 0;                                   

/Lmatrix 'PK' trt 1 -1 -1 1 0 0 1 -1 -1 1 0 0 1 -1 -1 1 0 0 0;

                          trt 1 -1 1 -1 -2 2 1 -1 1 -1 -2 2 1 -1 1 -1 -2 2 0;                                

/Lmatrix 'NPK' trt 1 -1 -1 1 0 0 -1 1 1 -1 0 0 0 0 0 0 0 0 0;

                           trt 1 -1 1 -1 -2 2 -1 1 -1 1 2 -2 0 0 0 0 0 0 0;

                           trt 1 -1 -1 1 0 0 1 -1 -1 1 0 0 -2 2 2 -2 0 0 0;

                           trt 1 -1 1 -1 -2 2 1 -1 1 -1 -2 2 -2 2 -2 2 4 -4 0;                                                       

/Lmatrix 'Control vs rest' trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -18;

/DESIGN = rep block(rep) trt .  

 

 

Data File

Syntax File

Result File

     

<<Back  

 

   Analysis Using SAS                                             Analysis Using SPSS                                            

 

  

 

Home Descriptive Statistics  Tests of Significance Correlation and Regression Completely Randomised Design  RCB Design  

Incomplete Block Design  Resolvable Block Design  Augmented Design  Latin Square Design Factorial RCB Design  

Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design Strip Plot Design 

Response Surface Design Cross Over Design  Analysis of Covariance Diagnostics and Remedial Measures 

Principal Component Analysis Cluster Analysis Groups of Experiments  Non-Linear Models  

Contact Us 

 

 

 

Copyright        Disclaimer        How to Quote this page        Report Error        Comments/suggestions 

Descriptive Statistics
Tests of Significance
Correlation and Regression
Completely Randomised Design
RCB Design
Incomplete Block Design
Resolvable Block Design
Augmented Design
Latin Square Design
Factorial RCB Design
Partially Confounded Design
Factorial Experiment with Extra Treatments
Split Plot Design
Strip Plot Design
Response Surface Design
Cross Over Design
Analysis of Covariance
Diagnostics and Remedial Measures
Principal Component Analysis
Cluster Analysis
Groups of Experiments
Non-Linear Models
Contact Us
Other Designed Experiments
    
(Under Development)

For exposure on SAS, SPSS, 

MINITAB, SYSTAT and  

MS-EXCEL for analysis of 

data from designed experiments:

 

Please see Module I of Electronic  Book II: Advances in Data Analytical Techniques

available at Design Resource Server      (www.iasri.res.in/design)