Design Resources Server

Analysis of Data from Designed Experiments

Augmented Design

IASRI
Home

                                                          <<Back

Analysis Using SPSS

 Analysis Using SPAD

  Analysis Using SAS 

                                                                                                            

To test the equality of check variety effects, accession effects and to compare accessions with check varieties, treatment contrast analysis is to be performed therefore, for ease of understanding, recode the accession number and check variety as follows:  

 

C1

1

 

 

 

 

 

 

N3

7

C2

2

N4

8

C3

3

N5

9

C4

4

N6

10

N1

5

N7

11

N2

6

N8

12

 

 The analysis of the data is performed using PROC GLM of SAS. The SAS commands are given in the sequel.

 

Data Input:

For performing analysis, input the data in the following format. 

{Here block is termed as blk, treatment as trt and yield as yld. It may, however, be noted that one can retain the same name or can code in any other fashion}.

 

data augmented_2;   /*one can enter any other name for data*/

input blk trt yld;

cards;

1          1          83

1          2          77

1          3          78

1          4          78

1          7          70

1          11        75

1          12        74

2          1          79

2          2          81

2          3          81

2          4          91

2          5          79

2          9          78

3          1          92

3          2          79

3          3          87

3          4          81

3          8          96

3          6          89

3          10        82

;

 

 

 

 

To test the significance of treatments one can perform the analysis of variance of the data and can perform Contrast analysis by using PROC GLM. This can be done using the following steps.

The following SAS statements can be made use of:

 

proc glm;

class blk trt;

model yld = blk trt;

lsmeans trt/pdiff;

contrast 'controls' trt 1 -1 0 0 0 0 0 0 0 0 0 0,

                             trt 1 1 -2 0 0 0 0 0 0 0 0 0,

                             trt 1 1 1 -3 0 0 0 0 0 0 0 0;

contrast 'tests' trt 0 0 0 0 1 -1 0 0 0 0 0 0,

                       trt 0 0 0 0 1 1 -2 0 0 0 0 0,

                       trt 0 0 0 0 1 1 1 -3 0 0 0 0,

                       trt 0 0 0 0 1 1 1 1 -4 0 0 0,

                       trt 0 0 0 0 1 1 1 1 1 -5 0 0,

                       trt 0 0 0 0 1 1 1 1 1 1 -6 0,

                       trt 0 0 0 0 1 1 1 1 1 1 1 -7;

contrast 'test vs controls' trt -2 -2 -2 -2 1 1 1 1 1 1 1 1;

run;

 

Data File

Result File

                          <<Back 

Analysis Using SAS                              Analysis Using SPSS                      Analysis Using SPAD                       

 

Home Descriptive Statistics  Tests of Significance Correlation and Regression Completely Randomised Design  RCB Design  

Incomplete Block Design  Resolvable Block Design  Augmented Design  Latin Square Design Factorial RCB Design  

Partially Confounded Design Factorial Experiment with Extra Treatments Split Plot Design Strip Plot Design 

Response Surface Design Cross Over Design  Analysis of Covariance Diagnostics and Remedial Measures 

Principal Component Analysis Cluster Analysis Groups of Experiments  Non-Linear Models  

Contact Us 

 

 

 

Copyright        Disclaimer        How to Quote this page        Report Error        Comments/suggestions 

Descriptive Statistics
Tests of Significance
Correlation and Regression
Completely Randomised Design
RCB Design
Incomplete Block Design
Resolvable Block Design
Augmented Design
Latin Square Design
Factorial RCB Design
Partially Confounded Design
Factorial Experiment with Extra Treatments
Split Plot Design
Strip Plot Design
Response Surface Design
Cross Over Design
Analysis of Covariance
Diagnostics and Remedial Measures
Principal Component Analysis
Cluster Analysis
Groups of Experiments
Non-Linear Models
Contact Us
Other Designed Experiments
    
(Under Development)

For exposure on SAS, SPSS, 
MINITAB, SYSTAT and
 
MS-EXCEL for analysis of data from designed experiments:

 Please see Module I of Electronic Book II: Advances in Data Analytical Techniques

available at Design Resource Server (www.iasri.res.in/design)